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Abstract

Measuring the attribution of input features toward the model output is one of the
popular post-hoc explanations on the Deep Neural Networks (DNNs). Among
various approaches to compute the attribution, the gradient-based methods are
widely used to generate attributions, because of its ease of implementation and the
model-agnostic characteristic. However, existing gradient integration methods such
as Integrated Gradients (IG) suffer from (1) the noisy attributions which cause the
unreliability of the explanation, and (2) the selection for the integration path which
determines the quality of explanations. FullGrad (FG) is an another approach
to construct the reliable attributions by focusing the locality of piece-wise linear
network with the bias gradient. Although FG has shown reasonable performance for
the given input, as the shortage of the global property, FG is vulnerable to the small
perturbation, while IG which includes the exploration over the input space is robust.
In this work, we design a new input attribution method which adopt the strengths
of both local and global attributions. In particular, we propose a novel approach
to distill input features using weak and extremely positive contributor masks. We
aggregate the intermediate local attributions obtained from the distillation sequence
to provide reliable attribution. We perform the quantitative evaluation compared
to various attribution methods and show that our method outperforms others. We
also provide the qualitative result that our method obtains object-aligned and sharp
attribution heatmap.

1 Introduction

Deep Neural Networks (DNNs) are increasingly applied to many fields in human-life such as self-
driving, medical predictions and time-series forecasts. Along with these improvements, the recent
models get bigger and more complicated that humans cannot investigate and understand the internal
decision mechanism of them. Identifying and analyzing the reasons for the model predictions are
important because the malfunction or the groundless decision of the model can cause the critical
problems. As an effort to provide the evidences on the decisions, the input attribution has been
well-studied, especially in visual tasks. Input attribution method aims to measure how much each
input feature contributes to the model prediction. Because the output of this method takes the form of
heatmap to provide relative importance among input features, it helps to locate the appearance of
human-level semantics in the input. Previous work also applies the attribution to debug the model by
wiping out Clever Hans of DNNs [Lapuschkin et al., 2019]. However, obtaining the trustful input
attribution is still challenging because (1) the highly nonlinear structure of modern DNNs makes it
difficult to correctly track the relationship between the input and the output, and (2) quantifying the
reliability of attribution methods is non-trivial because the ground-truth is not available.
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Figure 1: An illustration of Distilled Gradient Aggregation (DGA) and details of modules included in
the computation of DGA. DGA generates the discrete sequence of anchor points by distilling the
input features. We identify that aggregating the local attributions along the distillation sequence
provides the class (Dingo) oriented attribution heatmap. The details are described in the Section 3.2

Gradient-based input attribution is one of the main techniques to derive the relationship between
the model decision and the input features. The partial derivative of the output with respect to the
input provides the measure of sensitivity, which is easily computed in DNNs. Integrated Gradients
(IG) [Sundararajan et al., 2017] is a commonly used gradient-based method, which provides the
axiomatic properties to support the reliability of attributions. However, IG inheres the problem of
noisy attribution, which originates from the gradient integrating path, and several variants of IG have
been proposed to alleviate this issue [Smilkov et al., 2017; Kapishnikov et al., 2019, 2021; Pan et al.,
2021]. FullGrad (FG) [Srinivas and Fleuret, 2019] also raises the counter-intuitive behaviors of IG.
FG avoids this problem by considering only the local gradients instead of the path integration and
proposes to use the bias gradient. But FG is vulnerable to the small perturbation in the inputs due to
its locality.

In this work, we provide the analysis on the weakness of (1) FG method which is unavoidable if it
considers only single anchor point, and (2) IG method which the continuous path based gradient
integration may fail to quantify the intuitive attribution. To complement the shortcomings of the two
methods, we propose to aggregate the attribution from the multiple anchors. For the selection of
anchor points, we devise an algorithm to sequentially distill the irrelevant features to generate the
reliable attribution. The main contributions of our work are,

• Propose a novel feature distillation algorithm based on the intermediate local attribution to
generate the sequence of meaningful anchor points.

• Devise Distilled Gradient Aggregation (DGA), an attribution method by aggregating the
intermediate local attributions from the distilled input sequence for the reliable attributions.

• Qualitative and quantitative evaluations to validate the proposed method outperforms existing
gradient-based attribution methods.

2 Related Work

Input attribution is one of the post-hoc explanation methods, which aims to identify the influence
of each input feature to the model output on the trained model. There exists a considerable variety
of techniques to derive the input attribution. With the property that the feature map obtained by the
convolutional layers includes the spatial information, Class Activation Mapping (CAM) methods
compute the attribution by the weighted sum of the feature maps [Zhou et al., 2016; Selvaraju et al.,
2017]. Layer-wise Relevance Propagation (LRP) method propagates the model output backward to
the input [Bach et al., 2015; Nam et al., 2020]. LRP extends the Taylor decomposition to the DNNs
and distributes the relevance in layer-wise sense.
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Figure 2: Attribution heatmaps for the Gaussian noise perturbed images obtained by FullGrad (FG),
Integrated Gradient (IG) and Ours. Heatmaps from FG shows inconsistent results while other two
methods are consistent, which utilize the global perspective for the attribution. Corresponding pixel
perturbation scores also show that FG loses reliability against the simple noise perturbation. The
procedure of pixel perturbation is described in Section 4.1

There are another approach by measuring the behavior of the model by perturbing the input features.
Optimizing the input by gradient ascent gives an example which would maximally activates the target
neuron [Erhan et al., 2010; Nguyen et al., 2016; Olah et al., 2018]. Instead of maximizing the target
neuron activation, Extremal Perturbation optimizes the mask which removes or reveals the part of the
input to localize the attributed part of input [Fong et al., 2019]. It is extended by using Integrated
Gradients [Sundararajan et al., 2017] for the optimization to make the optimization more stable [Qi
et al., 2020]. By collecting the pair of partially removed inputs and corresponding model ouptuts,
training a linear model to resembles the mapping would give the feature importance in terms of
linear weights [Ribeiro et al., 2016]. Rather than training a new model, Randomized Input Sampling
for Explanation (RISE) computes the attribution by aggregating multiple randomly masked inputs,
weighted by the model outputs [Petsiuk et al., 2018].

Based on Aumann-Shapley value [Aumann and Shapley, 2015], which is one solution of the fair
distribution in the cooperative game theory, Integrated Gradients (IG) has been proposed [Sundarara-
jan et al., 2017]. IG is equipped with axiomatic properties which are desirable for the attribution
methods. IG is computed by integrating gradients over the straight path from the predefined baseline
to the input. As the attribution is corrupted by the noisy information along the path, alternatives
for the different paths have been proposed [Smilkov et al., 2017; Kapishnikov et al., 2019, 2021].
FullGrad (FG) [Srinivas and Fleuret, 2019], which utilizes the bias-gradient, is proposed to suppress
the counter-intuitive behavior of IG which is caused by the weak-dependency between the local linear
regions.

3 Distilled Gradient Aggregation Method

In this section, we propose our gradient aggregation method, Distilled Gradient Aggregation (DGA).
We first provide an example and analysis about the inconsistency observed by FullGrad, which uses
a single anchor point to compute attributions. We also provide the counter-intuitive behavior of IG
caused by the continuous gradient integration path. To complement both shortcomings, we propose
an aggregation method, which ensembles the local attribution from the sequence of inputs. To reduce
computational cost and reinforce the features that are in charge of the model decision, we suggest a
sequential feature distillation algorithm, which distills irrelevant features from the input.

3.1 Analyzing FG and IG on Simple Models

Assume we have the input vector x∈R2 and a simple neural network f equipped with partial linear
activation (e.g., ReLU). This network f can be regarded as the combination of piece-wise linear
functions [Montufar et al., 2014]. Each piece-wise linear function is only defined and feasible in
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Figure 3: (a) A contour of logit values for trained f . (b) The linear regions which the trained network
comprises. Each colored linear region corresponds to each piece-wise linear function. (c) Selected
two linear regions (A and B) and the zero baseline. The dotted lines indicate the perturbations for
x1 axis in the same linear region. (d) Attribution of IG and FG for each linear region. We identify
that for linear region A (include the baseline), the global attribution (IG) is same as the local ones
(FG). However, for linear region B, the global and local attribution has different attributions for input
samples.

corresponding linear region R(k), where ∪kR(k) = R2 and R(k1) ∩ R(k2) = ∅ for any k1 and k2.
Such piece-wise linear function is formulated as follow,

f(x) =


w(1)T x + b(1) x ∈ R(1)

· · ·
w(K)T x + b(K) x ∈ R(K)

(1)

where w(k)∈R2 and b(k)∈R denote weight and bias of k-th linear region respectively. Figure 3
depicts an illustrative example of the function f 2. For the network f , FullGrad (FG)[Srinivas and
Fleuret, 2019] and Integrated Gradient (IG)[Sundararajan et al., 2017] are given as follow,

FG(x) = Ψ(∇xf(x)⊙ x) +
∑
l∈L

∑
c∈cl

Ψ(∇bcf(x)bc) (2)

IG(x) =
∫ 1

α=0

∇γ(α)f(γ(α))⊙∇αγ(α)dα (3)

Vulnerability of FullGrad FullGrad suggests that the attribution should be same inside the same
linear region R(k), and this reduces the dependency between the attribution and the input x. This
property is introduced as weak dependency. However, such weak dependency derives the attribution
to be vulnerable to the model perturbation. For example, let we have two inputs, x and x′ = x + ϵ,
where ϵ be any small enough random perturbation. If we find any x and x′, such that the model
output is same, f(x) = f(x′), but the region is different, then the attribution on each input should be
different. This can be visualized by the simple experiment by generating noise perturbed image x + ϵ
and measuring the attribution, where ϵ ∼ N(0, σI). Figure 2 shows an example where the FullGrad
generates inconsistent attribution along with the simple Gaussian noise is added.

Counter-intuitive behavior of IG To visualize the counter-intuitive behavior of IG, we select two
linear regions (A, B) in Figure 3c and calculate the attribution in each region. In particular, we
select a sequence of data from a (white dot) to b (green dot), which is only shifted in x1 dimension.
Figure 3d illustrates corresponding attribution for two selected linear regions. We observe that only
attribution of x1 changes for the sequence of region A in both IG and FG methods. However, for
the sequence of region B, the IG attribution of both x1 and x2 changes at the same time, while FG
attribution shows attribution change only in x1. We conjecture this counter-intuitive behavior of IG is
caused by the baseline selection. With the zero-baseline (x̄ = 0), the integration paths of samples
in region A traverse only a single region to compute IG. On the other hand, paths of samples in
region B traverse through multiple regions. When traversing multiple regions, the counter-intuitive
behavior can be induced due to passing the undesirable linear regions. From this observation, we
can identify that the selection of baseline determines (1) which linear regions are traversed by the

2The implementation details are described in the Appendix J.
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(a) The sequence X̃ with WC mask.

D
is

ti
ll

a
ti

o
n

A
tt

r
ib

u
ti

o
n

(b) The sequence X̃ with WC and EPC mask.

Figure 4: Distillation sequence X̃ with WC mask and EPC mask for the target class French horn in
the pre-trained VGG-16. The bottom row of (a) and (b) indicates the local attribution ϕUFG(x̃(n))
for each colored box of first row.

path, and (2) how much portion of the path is included in each selected linear region. Although the
proper selection of baseline can be an one option to adjust (1) and (2) for the reliable attributions, it
is still non-trivial to control the sequence of the meaningful linear regions and each weight by only
changing the baseline.

Based on these insights, we raise the weakness of the local and global attribution methods: (1)
vulnerability and (2) counter-intuitive behavior. To alleviate these issues, we desire an attribution
method to combine the strengths of each type of attribution methods. To resolve such desire step by
step, we start from the local attribution which is free from the baseline selection. Then, the remained
problem is how to select the meaningful linear regions to generate the reliable attributions.

3.2 Sequential Feature Distillation

For the strategy to select linear regions, RISE [Petsiuk et al., 2018] suggests the random perturbation-
based approach. RISE explores the multiple linear regions with randomly ablated masks to measure
the importance of each ablated features. However, the randomized ablation includes the stochastic
process which requires expensive computational cost to achieve reliable attributions. We are also
inspired from the adaptive selection for the perturbed inputs in Guided IG (GIG) [Kapishnikov et al.,
2021], which can improve the final attribution. Thus, we hypothesize that the adaptive exploration of
linear regions based on the intermediate local attribution can reduce the cost of randomized exploration
and follow the spirit of the adaptive exploration. Finally, we propose the sequential feature distillation
algorithm to obtain a sequence of ablated inputs, the sequence of inputs X̃ = [x̃(0), x̃(1), x̃(2), · · · ],
where the irrelevant features are distilled. Motivated by previous work that masking out the irrelevant
features using IG [Fong et al., 2019; Qi et al., 2020], we propose to distill the impurities by using the
intermediate local attribution obtained along the sequence.

For reliable local attribution, FG proposes the bias gradient with post-processing Ψ(·) which includes
the normalization and upsampling. As Ψ(·) suggested by FG is usually over-estimated by the bias
gradient in deeper layers [Grabska-Barwinska et al., 2021], we redefine Ψ(·) as uniformly distributing
function for the bias gradient to alleviate the over-estimation problem.

Ψu (v) =
vT 1dim(v)

dim(x)
1dim(x) (4)

where 1d denotes a d-dimensional all-ones vector. We call FG with redefined post-processing Ψ(·)
as Uniform FullGrad (UFG), ϕUFG(·). Then we use UFG as the intermediate local attribution
method throughout the remained paper. We note that different local attribution, such as Grad*Input
[Shrikumar et al., 2016], can be used in our method. We provide the comparison of selecting different
local attribution in Appendix G.

To distill off the uninformative features, we build a mask to zero out the features with low magnitude
of local attribution. In the sequence X̃ , the relation between n and n+1-th ablated input is formalized
as,

x̃(n+ 1) = M(x̃(n))⊙ x̃(0) (5)

where x̃(0) = x and M(·) is a mask extractor. We define this mask extractor as the Weak Contributor
(WC) mask, MWC . The level of the WC mask increases along the distillation sequence X with the
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Algorithm 1 Distilled Gradient Aggregation
Input: Model f , Input x
Parameter: # of steps N , EPC threshold q, Negative scale β
Output: Attribution ϕDGA(x)

1: Let x̃(0) = x, Φ = ∅
2: for n in {0 . . . N} do
3: Φ = Φ ∪ {ϕUFG(x̃(n))}
4: M= n

NMWC(x̃(n), n;N)+(1− n
N )MEPC(x̃(n); q)

5: x̃(n+ 1) = x̃(0)⊙M
6: end for
7: ϕDGA(x) =

∑
ϕ∈Φ (max(ϕ, 0) + β · min(ϕ, 0))

8: return ϕDGA(x)

pre-defined number of steps N and finally the entire pixels become zero (i.e., x̃(N) = 0). We define
MWC

j (·) for each feature j as,

SWC
j (x) =

{
k

∣∣∣∣ ∣∣ϕUFG
k (x)

∣∣ ≤ ∣∣ϕUFG
j (x)

∣∣} (6)

MWC
j (x, n;N) =

{
0 if

|SWC
j (x)|
dim(x) ≤ n

N

1 otherwise
(7)

where SWC
j (x) is a set of feature indices that the magnitude of corresponding local attribution is

smaller than |ϕUFG
j (x)|. Practically, MWC

j (x, n;N) can be equivalently derived by thresholding
with n/N quantile of absolute local attributions. To implement the smooth change of features, we
gradually apply the mask with the scale factor proportional to the current step n. The sequential
relation with WC mask is defined as,

x̃(n+1) =
n

N
MWC(x̃(n), n;N)⊙ x̃(0). (8)

Figure 4 (a) depicts the sequence of distilled inputs X̃ with WC mask. We can identify that the
distillation by WC mask can remove the uninformative information (e.g., human body) to predict the
object class, French horn.

However, we observe that considering only WC mask can be difficult to distill irrelevant features,
if the strong local attribution is temporarily assigned to such features. For example, in Figure 4
(a), the human face (red box) remains until the end of the distillation with strong attribution. This
phenomenon can be caused when the noise exists in the gradient or the value of feature itself is too
large, which results in extremely high contributions for pixels without relevant information to predict
the target class. Once such pixels are assigned with high attribution values, WC mask repeatably
reassigns the masks to the same pixels and makes the overall distillation sequence be saturated. The
saturated distillation sequence X̃ disturbs the strength of multiple ablated inputs to build reliable
attribution.

We define additional mask to reduce the saturation by filtering out features with extremely strong
attribution. We call this mask as Extreme Positive Contributor (EPC) mask MEPC(·) and it is
formulated as,

SEPC
j (x) =

{
k

∣∣∣∣ ϕUFG
k (x) ≤ ϕUFG

j (x)

}
(9)

MEPC
j (x; q) =

{
1 if

|SEPC
j (x)|
dim(x) ≤ q

0 otherwise .
(10)

where q is EPC threshold to control the ratio of ablation. Finally, we combine two masks for our
distillation algorithm with relative weights w.r.t. the current step n as,

6



Table 1: Comparison of various attribution methods with LeRF and MoRF on three models.

G*I GBP IG FG GIG DGA

LeRF (↑ is better)
VGG-16 0.078 0.113 0.096 0.415 0.110 0.434

ResNet-18 0.114 0.145 0.158 0.448 0.185 0.533
Inception-V3 0.171 0.162 0.243 0.558 0.255 0.691

MoRF (↓ is better)
VGG-16 0.045 0.094 0.036 0.110 0.029 0.023

ResNet-18 0.050 0.124 0.038 0.131 0.029 0.019
Inception-V3 0.105 0.145 0.066 0.175 0.061 0.041

x̃(n+ 1) =

(
n

N
MWC(x̃(n), n;N) + (1− n

N
)MEPC(x̃(n); q)

)
⊙ x̃(0) (11)

We note that in early distillation step, EPC mask takes high weight to reduce saturation at too highly
attributed feature. In the late stage, WC mask gains high weight to remain the relevant features. The
distillation sequence X̃ with WC and EPC masks is shown in Figure 4 (b). We identify that using
both WC and EPC masks removes irrelevant features (red box) and iteratively assign the attribution
to relevant features (blue box).

3.3 Attribution Aggregation

With N distillation steps, we obtain N local attributions. The remaining question is how to aggregate
these local attributions to acquire the final attribution. Likewise previous studies [Selvaraju et al.,
2017; Kindermans et al., 2018; Bach et al., 2015], we desire to take the positive contribution from
each local attribution. Thus, we take the ReLU before the aggregation.

ϕDGA(x) =
1

N

N∑
n=1

ReLU(ϕUFG(x̃(n))). (12)

Finally, we call the unification of preceding modules as Distilled Gradient Aggregation (DGA)
method. DGA method consists of the distillation algorithm with WC and EPC masks to generate
the ablated inputs to achieve the local attribution, and the aggregation process considering features
with the positive attributions. The illustration of the overall structure is depicted in Figure 1 and
pseudo code is provided in Algorithm 1. To analyze the influence of each module (WC/EPC mask
and ReLU), we perform the ablation study for each module and the results are available in Appendix
A and H.

4 Experimental Results

In this section, we validate the effectiveness of DGA by both quantitative and qualitative comparison.
We note that evaluating the attribution method is still challenging due to the absence of the ground
truth. With this difficulty, we verify if the proposed method appropriately reflects the behavior of the
model prediction by providing the quantitative comparison using three metrics: (1) pixel perturbation
[Samek et al., 2016], (2) sensitivity-n [Ancona et al., 2018] and (3) RemOve-And-Retrain (ROAR)
[Hooker et al., 2019]. Then we also provide the qualitative comparison among different attribution
methods. In the following experiments, we set the hyperparameters for DGA as N=30 and q=0.9
with simple grid search. The details for the hyperparameter exploration is available in Appendix K.
We select various gradient-based attribution methods as the baselines: Gradient*Input (G*I), Guided
BackPropagation (GBP), Integrated Gradients (IG), FullGrad (FG), and GuidedIG (GIG).

4.1 Pixel Perturbation

Pixel perturbation is widely used method to benchmark the attribution methods if they correctly
capture the relevance between the input features and the model output. To quantify the relevance

7



Table 2: Comparison of various attribution methods with sensitivity-n on ResNet-18

q% 10 20 30 40 50 60 70 80 90

G*I -0.006 -0.009 -0.009 -0.013 -0.007 -0.014 -0.016 -0.022 -0.037
GBP 0.022 0.032 0.025 0.024 0.022 0.027 0.024 0.024 0.020

IG 0.013 0.022 0.020 0.027 0.032 0.037 0.039 0.047 0.067
GIG 0.006 0.007 0.004 0.002 0.003 0.002 0.002 0.002 -0.001
FG -0.045 -0.017 -0.005 0.001 0.003 0.003 0.008 0.008 0.004

DGA 0.095 0.096 0.101 0.098 0.095 0.089 0.083 0.080 0.079

between the input features and the model output, pixel perturbation method removes the pixel values
in order of relevance obtained by attribution methods. Then it measures the change of softmax output
for the target class with the perturbation. There are two orders of removal, Most-Relevant-First
(MoRF) to remove the pixels with top k% relevance and Least-Relevant-First (LeRF) to remove the
pixels with bottom k% relevance. If input feature is actually highly related to the model prediction,
the softmax output should decrease steeply when it is removed. Thus, MoRF is better if it is lower. In
the same manner, higher LeRF is better.

We use 50k images of the validation set provided by ImageNet [Russakovsky et al., 2015]. We use
three publicly available pre-trained models: VGG-16 [Simonyan and Zisserman, 2015], Inception-v3
[Szegedy et al., 2016], ResNet-18 [He et al., 2016]. Table 1 indicates MoRF and LeRF results
for the various attribution methods and model architectures. We identify that DGA shows the best
performance in both MoRF and LeRF measure on entire architectures. We also provide additional
comparison with different attribution methods (e.g., LRP) in Appendix I.

4.2 Sensitivity-n

Sensitivity-n [Ancona et al., 2018] has been suggested to quantify the generalization of previously
suggested properties, Completeness [Sundararajan et al., 2017] and Summation to Delta [Shrikumar
et al., 2017]. In general, since not all deep learning models can satisfy Sensitivity-n, we use empirical
approximations to determine whether there is an algorithmic bias in the process of calculating
attribution. To measure how much the attribution method satisfies this properties, the metric quantifies
the correlation between the sum of the attributions (

∑
i∈S ϕi(x)) for any subset of features (S), and

the change of the model output when the input subset is ablated (xSc ). The metric can be represented
as,

corrS

[∑
i∈S

ϕi(x), f(x)−f(xSc)

]
≈ corrMq

[〈
Ψ(Mq), ϕ(x)

〉
, f

(
x
)
−f

(
(1−Ψ(Mq))⊙x

)]
(13)

where the subset S is uniform randomly sampled with its cardinality |S| = n and SC denotes its
complement. The higher correlation value indicates that the attribution method empirically satisfies
the sensitivity-n.

For computational efficiency, instead of ablating the entire individual input features (n), we perform
patch-wise ablation to compute sensitivity-n with randomly sampled binary masks Mq ∈ {0, 1}14×14

(100 masks for each input) where the portion of 1 in each mask is constrained be q. After the mask
selection, we multiply the upsampled mask (Ψ(Mq)) to the attribution and the input to compute the
correlation. The Table 2 shows the correlation values for various percentage of selection (q) over
each attribution method for ResNet-18. We identify that DGA has the highest correlation values in
entire cases.

4.3 RemOve-And-Retrain (ROAR)

ROAR is another metric to evaluate how well the attribution method captures the relevance of feature
in the perspective of the model training. ROAR is performed by measuring the performance of the
re-trained model with inputs modified according to relative ordering of the attribution. Each input
in the dataset is modified by removing pixels with top k% attribution and replacing them with the
average pixel value of the input. We perform ROAR experiment with simple CNN (6 Conv + 3
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Figure 5: Comparison of ROAR experiment results on CIFAR-10 dataset among various attribution
methods. The test accuracy for corresponding the percentage of removal.

Linear) trained on 50k images of training set provided by CIFAR-10 dataset [Krizhevsky, 2009] using
Adam optimizer with learning rate 3e-4 and 100 epochs. After training, the performance of the model
is quantified using the standard test dataset with 10k images. We note that the attribution method
captures more relevant features if the test accuracy is lower. We provide the average performance
over 10 trials for each attribution method, where the parameters are random initialized at each trial
and fixed between attribution methods. Figure 5 shows the test accuracy measure in the ROAR
experiment for each attribution method. The result indicates that the model trained on the modified
dataset with DGA steeply decreases the test accuracy even with 10% removed. We conclude that
DGA can extract the features which are relevant to training procedure in DNNs.

4.4 Qualitative comparison

We qualitatively compare the various attribution methods by visualizing the attribution heatmap and
top 10% most relevant features at the same time. In Figure 6, we provide the result of randomly
selected images from the validation set of ImageNet with the pre-trained VGG-16. We can identify
that the attributions are more aligned with the object comparing other methods. For example, in
the right-top row, DGA focuses the person who grabs a paddle while almost methods distribute the
relevant pixels to sky and ocean. Although FG concentrates to the person, the relevant patch has less
sharp than patch of DGA. We provide more examples and results for different models in Appendix
B-D.

5 Discussion

In this paper, we propose a novel gradient-based attribution method, Distilled Gradient Aggregation
(DGA). We provide the vulnerability of FG against the input perturbation and the counter-intuitive
behavior of IG. To complement the weakness of both methods, we propose the gradient aggregation
method along the distillation sequence that generates the inputs which the impurities are distilled.
Our method obtains high quality attributions with its sharpness and object-alignment, and we verify
the method through pixel perturbation, sensitivity-n, and ROAR evaluation metrics. We believe that
our DGA method can be broadly applied to explain a decision of various DNNs.

Broader Impact Transparency of deep models is a matter of the highest priority for the application
of such models in the real world, e.g., medical diagnosis [Caruana et al., 2015] and autonomous
driving [Yurtsever et al., 2020]. We believe that providing the evidence which is well-aligned with
the model decision would help the users of such applications to place great trust and the developers
to improve or fix the model for better performance. Discovering unintended biases in the model is
another issue [Stock and Cisse, 2018]. Such biases may occur from the dataset [Kim et al., 2018]
or the model itself. Identifying the root cause and removing such biases would be another expected
future work, beyond the explanation on the input features.

Limitation Although our method has empirically outperformed in qualitative comparison and various
quantitative experiments compared to previous work, the notion of better input attribution method
is still vague. In this work, we adaptively find the sequence of inputs by using local attribution, but
there would exist better justification of the sequence or the set of inputs that are essential clues for
identifying the core features in the input.
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Figure 6: Qualitative comparison among various attribution methods for VGG-16 in the validation
dataset of ImageNet. Upper rows describe the heatmaps obtained by each methods and lower rows
shows top 10% most relevant input features. DGA generates sharp and object-oriented attribution
heatmap in the almost examples. See more examples in Appendix B-D.
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